Low Noise & High Stability
Quiet baselines and stable feedback for precise TER/Isc and current recordings.
Die Spannungsklemme wird von Elektrophysiologen verwendet, um die Ionenströme über eine neuronale Membran zu messen und dabei die Membranspannung auf einem festgelegten Niveau zu halten. Neuronale Membranen enthalten viele verschiedene Arten von Ionenkanälen, von denen einige spannungsgesteuert sind. Die Spannungsklemme ermöglicht die Manipulation der Membranspannung unabhängig von den Ionenströmen, wodurch die Strom-Spannungs-Beziehungen von Membrankanälen untersucht werden können.
Das Konzept der Spannungsklemme geht auf Kenneth Cole und George Marmount aus den 1940er Jahren zurück. Cole entdeckte, dass es möglich war, zwei Elektroden und einen Rückkopplungskreis zu verwenden, um das Membranpotential der Zelle auf einem vom Experimentator festgelegten Niveau zu halten.
Alan Hodgkin erkannte, dass es zum Verständnis des Ionenflusses durch die Membran notwendig war, Unterschiede im Membranpotential zu eliminieren. Nach Experimenten mit der Spannungsklemme skizzierten Hodgkin und Andrew Huxley 1952 die ionischen Ursachen des Aktionspotentials, wofür sie 1963 den Nobelpreis für Physiologie oder Medizin erhielten.
A voltage current clamp (voltage-clamp and current-clamp amplifier) lets researchers hold membrane voltage or inject defined current to quantify ion transport and membrane excitability with low noise and fast response. In epithelial studies and Ussing chambers, clamps enable precise short-circuit current (Isc) control and high-fidelity recordings for transport and barrier research.
Mode | Primary Application | Highlights |
---|---|---|
Voltage Clamp (V-Clamp) | Hold membrane/epithelial potential and measure ionic currents | Stabilizes Vm via feedback; ideal for IV curves, channel kinetics, and transport quantification |
Current Clamp (I-Clamp) | Inject defined current and record voltage responses | Characterize excitability, resistance, and time constants; bridge/offset tools improve accuracy |
Two-Electrode Voltage Clamp (TEVC) | Large cells/epithelia with separate sense and drive electrodes | Excellent stability; compatible with Ag/AgCl electrodes and low-noise bath references |
Short-Circuit Current Clamp (Isc) | Ussing chamber studies at ~0 mV transepithelial potential | Direct Isc measurement for transport assays, drug response, and barrier integrity work |
Quiet baselines and stable feedback for precise TER/Isc and current recordings.
Rapid settling for accurate steps, pulses, and dynamic protocols.
Voltage-clamp, current-clamp, TEVC, and short-circuit clamp in configurable ranges.
Integrates with Ag/AgCl half-cells, reference electrodes, and Ussing chamber hardware.
Scaled analog outputs for current/voltage; easy hookup to data acquisition and analysis.
Appropriate compliance voltage, protection, and calibration for repeatable results.
Following these steps improves signal-to-noise, measurement accuracy, and reproducibility in voltage-clamp, current-clamp, and Isc assays.
What is a voltage current clamp?
Answer: A voltage/current clamp is an amplifier that operates in two modes: voltage-clamp holds membrane voltage and measures ionic current, while current-clamp injects defined current and records the resulting voltage.
When should I use voltage clamp vs current clamp?
Answer: Use voltage-clamp to isolate conductances, generate IV curves, and quantify transport; use current-clamp to study excitability, membrane resistance, and time-dependent voltage responses.
What is TEVC and short-circuit (Isc) clamp?
Answer: TEVC uses separate electrodes to sense voltage and drive current for stable control in large cells or epithelia. Short-circuit clamp holds transepithelial voltage near 0 mV in Ussing chambers to measure Isc directly.
Which specifications matter when selecting a clamp?
Answer: Key specs include bandwidth/settling time, noise, gain ranges, compliance voltage, stability/oscillation behavior, output scaling, and compatibility with your electrodes and DAQ.
Are your clamps compatible with Ussing chambers and electrodes?
Answer: Yes. Our voltage/current clamps interface with Ag/AgCl and bath reference electrodes and integrate with standard Ussing chamber hardware for TER and Isc studies.
How do I calibrate and zero the clamp?
Answer: Before each run, zero electrode offsets, verify gain/scale with a known resistor or test circuit, confirm polarity, and document filter/sampling settings for repeatable results.
Ussing Chambers — pair with short-circuit clamp for epithelial transport studies.
Electrodes & Accessories — Ag/AgCl electrodes, reference leads, and cables.
Acquire & Analyze — data acquisition and analysis tools for clamp outputs.
Talk to an applications specialist — get help selecting the right clamp and setup.