Low Noise & High Stability
Quiet baselines and stable feedback for precise TER/Isc and current recordings.
A voltage current clamp—also called a voltage-/current-clamp amplifier—provides two complementary modes for electrophysiology. In voltage-clamp mode, the amplifier holds the membrane potential at a user-defined level via feedback while measuring the ionic current that flows. In current-clamp mode, it injects a defined current and records the resulting voltage change. By controlling voltage independently of current, researchers can map precise current–voltage (I–V) relationships for membrane ion channels (including voltage-gated channels) and quantify conductance, resistance, and short-circuit current (Isc) in epithelial transport studies.
The technique was pioneered in the 1940s by Kenneth Cole and George Marmont, who showed that two electrodes and a feedback circuit can maintain a membrane potential selected by the experimenter. Building on this, Alan Hodgkin and Andrew Huxley used voltage-clamp experiments to explain the ionic basis of the action potential in 1952—work recognized by the 1963 Nobel Prize in Physiology or Medicine. Modern voltage current clamps extend this foundation with low-noise electronics, fast response, and TEVC options for large cells and epithelia.
A voltage current clamp (voltage-clamp and current-clamp amplifier) lets researchers hold membrane voltage or inject defined current to quantify ion transport and membrane excitability with low noise and fast response. In epithelial studies and Ussing chambers, clamps enable precise short-circuit current (Isc) control and high-fidelity recordings for transport and barrier research.
Mode | Primary Application | Highlights |
---|---|---|
Voltage Clamp (V-Clamp) | Hold membrane/epithelial potential and measure ionic currents | Stabilizes Vm via feedback; ideal for IV curves, channel kinetics, and transport quantification |
Current Clamp (I-Clamp) | Inject defined current and record voltage responses | Characterize excitability, resistance, and time constants; bridge/offset tools improve accuracy |
Two-Electrode Voltage Clamp (TEVC) | Large cells/epithelia with separate sense and drive electrodes | Excellent stability; compatible with Ag/AgCl electrodes and low-noise bath references |
Short-Circuit Current Clamp (Isc) | Ussing chamber studies at ~0 mV transepithelial potential | Direct Isc measurement for transport assays, drug response, and barrier integrity work |
Quiet baselines and stable feedback for precise TER/Isc and current recordings.
Rapid settling for accurate steps, pulses, and dynamic protocols.
Voltage-clamp, current-clamp, TEVC, and short-circuit clamp in configurable ranges.
Integrates with Ag/AgCl half-cells, reference electrodes, and Ussing chamber hardware.
Scaled analog outputs for current/voltage; easy hookup to data acquisition and analysis.
Appropriate compliance voltage, protection, and calibration for repeatable results.
Following these steps improves signal-to-noise, measurement accuracy, and reproducibility in voltage-clamp, current-clamp, and Isc assays.
What is a voltage current clamp?
Answer: A voltage/current clamp is an amplifier that operates in two modes: voltage-clamp holds membrane voltage and measures ionic current, while current-clamp injects defined current and records the resulting voltage.
When should I use voltage clamp vs current clamp?
Answer: Use voltage-clamp to isolate conductances, generate IV curves, and quantify transport; use current-clamp to study excitability, membrane resistance, and time-dependent voltage responses.
What is TEVC and short-circuit (Isc) clamp?
Answer: TEVC uses separate electrodes to sense voltage and drive current for stable control in large cells or epithelia. Short-circuit clamp holds transepithelial voltage near 0 mV in Ussing chambers to measure Isc directly.
Which specifications matter when selecting a clamp?
Answer: Key specs include bandwidth/settling time, noise, gain ranges, compliance voltage, stability/oscillation behavior, output scaling, and compatibility with your electrodes and DAQ.
Are your clamps compatible with Ussing chambers and electrodes?
Answer: Yes. Our voltage/current clamps interface with Ag/AgCl and bath reference electrodes and integrate with standard Ussing chamber hardware for TER and Isc studies.
How do I calibrate and zero the clamp?
Answer: Before each run, zero electrode offsets, verify gain/scale with a known resistor or test circuit, confirm polarity, and document filter/sampling settings for repeatable results.
Ussing Chambers — pair with short-circuit clamp for epithelial transport studies.
Electrodes & Accessories — Ag/AgCl electrodes, reference leads, and cables.
Acquire & Analyze — data acquisition and analysis tools for clamp outputs.
Talk to an applications specialist — get help selecting the right clamp and setup.